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The Greengard–Rokhlin fast multipole method (FMM) provides an efficient
numerical algorithm to calculate the two-dimensional stream function and velocity
field at a number of target points associated with a large system of vortices (sources).
In this paper we discuss an extension to their adaptive scheme. The added feature
allows the specification of target points that do not have to coincide with the location
of the sources. This is useful when specifying separate source and target fields for
calculating boundary conditions, trajectories of passive scalar quantities, data for
stream-function plots, etc. A simple algorithm has been developed to optimize the
method for cases where the number of sources differs significantly from the number
of target points. c© 1998 Academic Press
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INTRODUCTION

The Greengard–Rokhlin fast multipole method (FMM) provides an efficient numerical
algorithm to calculate the two-dimensional stream function and velocity field associated
with a large system of vortices. The general method comes from work developed by Rokhlin
[1], Greengard and Rokhlin [2], and Carrieret al.[3]. These fast methods take advantage of
multipole and local series expansions, which enables calculations to be made for interactions
between groups of particles which are in well-separated spatial domains rather than having
to consider interactions between every pair of particles.

One of the features of these algorithms is that the locations of sources (vortices) are the
same as the locations of the targets (evaluation points). If the goal of the computation is to

1 This work was performed in part at Sandia National Laboratories, a multiprogram laboratory operated by
Sandia Corporation, a Lockheed-Martin Company, for the U.S. Department of Energy under Contract DE-AC04-
94AL85000.
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determine the velocity and stream function at the vortex centers this is sufficient. In some
cases, however, it is useful to specify separate source and target fields so as to provide an
efficient means for calculating boundary conditions, trajectories of passive scalar quantities,
data for stream-function plots, etc.

In this paper we discuss an extension to the adaptive scheme of Carrieret al. [3]. The
added feature allows specification of target point locations that may be different from those
of the sources. A simple algorithm based on numerical experiments has been developed to
optimize the method for cases where the number of vorticesNV differs significantly from
the number of target pointsNT.

GENERAL METHODOLOGY

In order to efficiently apply the multipole and local series expansions to regions for which
they converge, the flow domain must be decomposed into a number of smaller domains.
In the work of Carrieret al. [3] the domain decomposition begins by placing a square
around all of the source and target points of interest. The square is then subdivided into
four smaller squares. The smaller squares are further subdivided if more than a specified
number of points reside within them. This process continues until the number of points in
any childless box (undivided box) is less than some specified number.

In the present work, a square box is first constructed which encloses all of theNV sources
in the flow as well as all of theNT target points. This box represents the zeroth level source
box as well as the zeroth level target box. We first subdivide the source box into four boxes if
it contains more thanNS vortices. Here,NS is some specified number which will eventually
be determined so as to minimize computing time. Smaller boxes which contain more than
NS vortices are further subdivided. The mesh for the target points is generated in a similar
manner. Subdivision occurs until there are less thanNF target points in any given childless
target box.

A somewhat involved procedure is used to define the separation condition between a
particular target box and each of the source boxes in the flow. This procedure determines
the way in which the influences of vortices in a particular source box on target points in a
given target box are computed. In general, there are five possibilities. These possibilities
are specified by placing all of the source boxes in one of five lists for a given target box.
Since the definitions of these “box lists” have to be modified for separate source and target
meshes it is essential to present them here in some detail.

In order to formalize the box list definitions, let NBOXI refer to the target box for which
a box list is being developed. Parent boxes are boxes which have been subdivided into four
smaller boxes, while childless boxes have not. A colleague box of NBOXI is a box which
is adjacent to NBOXI and which has the same size (level) as NBOXI. Definitions for the
five box lists are as follows:

• Box List 1: In order for NBOXI to have any list 1 boxes, NBOXI must itself be childless.
If NBOXI is a childless box, then list 1 boxes consist of all childless source boxes at all
levels which are adjacent to NBOXI and all childless source boxes which are contained
within, congruent with, or contain NBOXI. This list defines childless source boxes which
are not sufficiently separated from NBOXI to allow any of the series expansions to be used.
Direct calculations must be made for this list.

• Box List 2: List 2 boxes of NBOXI are source boxes which occupy the same positions
that would be occupied by children of the colleagues of NBOXI’s parent that are well
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separated from NBOXI. Note that the colleagues of NBOXI’s parent do not actually have
to exist or have children. NBOXI and its list 2 source boxes can be either parent or childless
boxes. NBOXI and its list 2 boxes will be the same size (level) and will be separated by at
least the dimension of one of their sides. For this case, both source domain (multipole) and
target domain (local) series expansions can be used.

• Box List 3: In order for NBOXI to have any list 3 boxes, NBOXI must itself be
childless. List 3 boxes can be either parent or childless source boxes. List 3 boxes occupy
the positions that descendants of the colleagues of NBOXI would occupy. Note that the
colleagues of NBOXI do not actually have to exist or to have descendants. The parent of
the list 3 box must be adjacent to NBOXI but the list 3 box must not itself be adjacent to
NBOXI. List 3 boxes will always be smaller than NBOXI. NBOXI will be separated from
the list 3 box by one box which is the same size as the list 3 box. Source domain series
expansions (multipole) can be used, target domain (local) expansions cannot.

• Box List 4: NBOXI can be either a parent or a childless box. List 4 boxes must be
childless source boxes. NBOXI is in the position that a descendant of the colleagues of any
list 4 box would occupy. Note that the colleagues of the list 4 box do not have to exist nor do
they have to have descendants. The parent of NBOXI must be adjacent to the list 4 box but
NBOXI must not itself be adjacent to the list 4 box. List 4 boxes will always be larger than
NBOXI. NBOXI will be separated from the list 4 box by one box which is the same size as
NBOXI. Target domain (local) series expansions can be used, source domain (multipole)
expansions cannot.

• Box List 5: List 5 boxes consist of all source boxes that are well separated from
NBOXI’s parent. No calculations are necessary nor is any list ever made for these boxes.
Contributions from these distant boxes reside in the parent of NBOXI.

The primary modification to the Carrier–Greengard–Rokhlin set of box lists found in
Ref. [3] is in the specification of the List 1 source boxes to include those source boxes that
either are contained within or contain the target box in question. Other modifications are
more cosmetic than substantive but provide additional help in the interpretation of the rules.

Aside from the generation of separate meshes for the sources and targets along with the
indicated modifications to the box lists, the computational algorithm is the same as that
used in Ref. [3]. It should be noted, however, that we now have two parameters,NS andNF,
which represent the maximum number of points in a childless box. These parameters must
be chosen to minimize computational time.

BENCHMARK TESTS

The important dependent variables in the benchmark tests are the CPU run times and the
truncation errors associated with the calculation of field variables. The independent variables
are the number of vortex sourcesNV and target pointsNT in the field, the distribution of
the sources and target points in the field, the number of terms used in the multipole and
local series expansions, and the maximum number of source pointsNS and target pointsNF

allowed in any childless box in the source and target meshes.
Four general configurations of vortex and target point placements have been studied.

These configurations are indicated in Fig. 1. In the first set of cases, the source and target
points are uniformly placed. The total number of source points may be different from the
total number of target points, which holds true for any of the configurations studied. This
is labeled as the uniform–uniform (U-U) case. For the second set of cases, all of the source
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FIG. 1. Benchmark test cases.

and target points are arranged on a spiral. This case is designated as the spiral–spiral (S-S)
case. For the third set of cases, the sources are on the spiral while the targets are uniformly
spaced (S-U). Finally, for the fourth set, the sources are uniformly spaced while the targets
are on the spiral (U-S).

The metric which we have used to assess the error incurred by truncation of the multipole
and local series for the stream function and the magnitude of the velocity vector field are
given by the following equations:

εψ =
[∑NV

i =1(|ψ |i − |ψ |ei)
2∑NV

i =1 |ψ |2ei

]1/2

, εU =
[∑NV

i =1(|U |i − |U |ei)
2∑NV

i =1|U |2ei

]1/2

. (1)

Here,|ψ |i and|U |i are the magnitudes of the stream function and velocity vector at pointi as
calculated from the truncated series. The quantities|ψ |ei and|U |ei are the magnitudes of the
stream function and velocity vector at pointi as calculated exactly using the direct method.

RESULTS

In order to investigate the relationship between accuracy, CPU time, and optimal values
for the maximum number of sources and target points in a box, we first began by making a
series of runs for the U-U configuration with 10,202 unit strength vortices. In this series, the
maximum number of sourcesNS and target pointsNF in a box were set equal to each other
and varied between 10 and 60. The number of terms used in the series expansionsNmax was
varied between 4 and 20. The error in the stream functionεψ was found to be on the order
of 1 × 10−6 when the number of terms in the series expansionNmax ≥ 6. The error in the
velocityεU for Nmax ≥ 6 was found to be less than 1× 10−4, which is probably acceptable
for most engineering calculations. The error appeared to be insensitive to the values ofNS

andNF over the range 10 to 60. The CPU time was minimized for a range of values with
NS andNF between 20 and 60.

In order to examine the effect of varyingNS, NF, NV, andNT on CPU time, 150 cases
were run withNmax = 6. Three of the set of six contour plots generated are shown in Fig. 2a.
The contours represent lines of constant CPU time which are normalized by dividing actual
CPU time by the minimum CPU time associated with a given plot. These plots suggest that
in order to make optimal choices forNS andNF an algorithm such as the following might
be used:

NS = 30 max(1,
√

NV/NT), NF = 30 max(1,
√

NT/NV). (2)

The symbolz in Fig. 2 represents application of Eq. (2) to the various cases.
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FIG. 2. Normalized contour plots of CPU time(Nmax = 6).

A detailed analytical development for calculating the optimal value forNS andNF is not
too useful since it leads to two nonlinear algebraic equations which contain constants that are
themselves functions of the computer system, algorithmic implementation, and geometry
of the problem. However, if one minimizes the operation count based on the ratio ofNF/NS

it is found that the optimal value forNF/NS ≈ √
NT/NV. The three plots in Fig. 2a where

NT > NV suggest that the optimal choice forNS is a constant equal to about 30. For the three
cases (not shown) in whichNV andNT are interchanged, one observes that the optimal choice
for NF is now a constant equal to about 30. These observations (NS ≈ 30, NT > NV and
NF ≈ 30, NV > NT) along with the minimization result(NF/NS ≈ √

NT/NV) are sufficient
to construct Eq. (2).

Based on Fig. 2 and 13 other contour plots for the U-U, S-S, S-U, and U-S configurations,
the use of Eq. (2) yields CPU values which are typically less than 10% above the optimal
and in one case (Fig. 2c, bottom plot) 20% above the optimal. The 13 plots not shown here
for the most part represent symmetries in the ratioNV to NT or in the configuration itself
(S-U versus U-S). In general, the results also reflect these symmetries.
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FIG. 3. CPU time and error(Nmax = 6).

We now examine the CPU times and errors whenNmax= 6 andNS andNF are governed
by Eq. (2). For the U-U configuration, a set of runs were made withNV = NT where
the number of vortices and target points varied from about 100 to 30,000. In addition,
four cases were run whereNV/NT = (1/9, 1/2, 2, 9). A similar set of runs were made
for the S-S, S-U, and U-S configurations, although we do not present the U-S results
herein since they are very similar to the S-U results. Four cases whereNV 6= NT were
run for the S-S, S-U, and U-S configurations withNV/NT = (1/4, 1/2, 2, 4). CPU time
and error results for the U-U, S-S, and S-U, configurations are plotted in Fig. 3 versus√

NV NT.
From Fig. 3 it can be seen that the CPU time data are correlated very well with the

parameter
√

NV NT for each of the configurations. In general, the error data for cases where
NV = NT andNV 6= NT correlated reasonably well. An exception to this is the velocity error
associated with the S-S configuration.

Additional tabulated and graphical data including detailed timing studies for individual
operations in the fast solver may be found in Ref. [4].
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